\(\int \tan (c+d x) (a+i a \tan (c+d x))^n (A+B \tan (c+d x)) \, dx\) [221]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 32, antiderivative size = 111 \[ \int \tan (c+d x) (a+i a \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=\frac {A (a+i a \tan (c+d x))^n}{d n}-\frac {(A-i B) \operatorname {Hypergeometric2F1}\left (1,n,1+n,\frac {1}{2} (1+i \tan (c+d x))\right ) (a+i a \tan (c+d x))^n}{2 d n}-\frac {i B (a+i a \tan (c+d x))^{1+n}}{a d (1+n)} \]

[Out]

A*(a+I*a*tan(d*x+c))^n/d/n-1/2*(A-I*B)*hypergeom([1, n],[1+n],1/2+1/2*I*tan(d*x+c))*(a+I*a*tan(d*x+c))^n/d/n-I
*B*(a+I*a*tan(d*x+c))^(1+n)/a/d/(1+n)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {3673, 3608, 3562, 70} \[ \int \tan (c+d x) (a+i a \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=-\frac {(A-i B) (a+i a \tan (c+d x))^n \operatorname {Hypergeometric2F1}\left (1,n,n+1,\frac {1}{2} (i \tan (c+d x)+1)\right )}{2 d n}+\frac {A (a+i a \tan (c+d x))^n}{d n}-\frac {i B (a+i a \tan (c+d x))^{n+1}}{a d (n+1)} \]

[In]

Int[Tan[c + d*x]*(a + I*a*Tan[c + d*x])^n*(A + B*Tan[c + d*x]),x]

[Out]

(A*(a + I*a*Tan[c + d*x])^n)/(d*n) - ((A - I*B)*Hypergeometric2F1[1, n, 1 + n, (1 + I*Tan[c + d*x])/2]*(a + I*
a*Tan[c + d*x])^n)/(2*d*n) - (I*B*(a + I*a*Tan[c + d*x])^(1 + n))/(a*d*(1 + n))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b*c - a*d)^n*((a + b*x)^(m + 1)/(b^(
n + 1)*(m + 1)))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 3562

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[-b/d, Subst[Int[(a + x)^(n - 1)/(a - x), x]
, x, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 + b^2, 0]

Rule 3608

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*(
(a + b*Tan[e + f*x])^m/(f*m)), x] + Dist[(b*c + a*d)/b, Int[(a + b*Tan[e + f*x])^m, x], x] /; FreeQ[{a, b, c,
d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] &&  !LtQ[m, 0]

Rule 3673

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B*d*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {i B (a+i a \tan (c+d x))^{1+n}}{a d (1+n)}+\int (a+i a \tan (c+d x))^n (-B+A \tan (c+d x)) \, dx \\ & = \frac {A (a+i a \tan (c+d x))^n}{d n}-\frac {i B (a+i a \tan (c+d x))^{1+n}}{a d (1+n)}-(i A+B) \int (a+i a \tan (c+d x))^n \, dx \\ & = \frac {A (a+i a \tan (c+d x))^n}{d n}-\frac {i B (a+i a \tan (c+d x))^{1+n}}{a d (1+n)}-\frac {(a (A-i B)) \text {Subst}\left (\int \frac {(a+x)^{-1+n}}{a-x} \, dx,x,i a \tan (c+d x)\right )}{d} \\ & = \frac {A (a+i a \tan (c+d x))^n}{d n}-\frac {(A-i B) \operatorname {Hypergeometric2F1}\left (1,n,1+n,\frac {1}{2} (1+i \tan (c+d x))\right ) (a+i a \tan (c+d x))^n}{2 d n}-\frac {i B (a+i a \tan (c+d x))^{1+n}}{a d (1+n)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.81 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.78 \[ \int \tan (c+d x) (a+i a \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=\frac {(a+i a \tan (c+d x))^n \left (-\left ((A-i B) (1+n) \operatorname {Hypergeometric2F1}\left (1,n,1+n,\frac {1}{2} (1+i \tan (c+d x))\right )\right )+2 (A+A n-i B n+B n \tan (c+d x))\right )}{2 d n (1+n)} \]

[In]

Integrate[Tan[c + d*x]*(a + I*a*Tan[c + d*x])^n*(A + B*Tan[c + d*x]),x]

[Out]

((a + I*a*Tan[c + d*x])^n*(-((A - I*B)*(1 + n)*Hypergeometric2F1[1, n, 1 + n, (1 + I*Tan[c + d*x])/2]) + 2*(A
+ A*n - I*B*n + B*n*Tan[c + d*x])))/(2*d*n*(1 + n))

Maple [F]

\[\int \tan \left (d x +c \right ) \left (a +i a \tan \left (d x +c \right )\right )^{n} \left (A +B \tan \left (d x +c \right )\right )d x\]

[In]

int(tan(d*x+c)*(a+I*a*tan(d*x+c))^n*(A+B*tan(d*x+c)),x)

[Out]

int(tan(d*x+c)*(a+I*a*tan(d*x+c))^n*(A+B*tan(d*x+c)),x)

Fricas [F]

\[ \int \tan (c+d x) (a+i a \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{n} \tan \left (d x + c\right ) \,d x } \]

[In]

integrate(tan(d*x+c)*(a+I*a*tan(d*x+c))^n*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

integral(((-I*A - B)*e^(4*I*d*x + 4*I*c) + 2*B*e^(2*I*d*x + 2*I*c) + I*A - B)*(2*a*e^(2*I*d*x + 2*I*c)/(e^(2*I
*d*x + 2*I*c) + 1))^n/(e^(4*I*d*x + 4*I*c) + 2*e^(2*I*d*x + 2*I*c) + 1), x)

Sympy [F]

\[ \int \tan (c+d x) (a+i a \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=\int \left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{n} \left (A + B \tan {\left (c + d x \right )}\right ) \tan {\left (c + d x \right )}\, dx \]

[In]

integrate(tan(d*x+c)*(a+I*a*tan(d*x+c))**n*(A+B*tan(d*x+c)),x)

[Out]

Integral((I*a*(tan(c + d*x) - I))**n*(A + B*tan(c + d*x))*tan(c + d*x), x)

Maxima [F]

\[ \int \tan (c+d x) (a+i a \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{n} \tan \left (d x + c\right ) \,d x } \]

[In]

integrate(tan(d*x+c)*(a+I*a*tan(d*x+c))^n*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^n*tan(d*x + c), x)

Giac [F]

\[ \int \tan (c+d x) (a+i a \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{n} \tan \left (d x + c\right ) \,d x } \]

[In]

integrate(tan(d*x+c)*(a+I*a*tan(d*x+c))^n*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^n*tan(d*x + c), x)

Mupad [F(-1)]

Timed out. \[ \int \tan (c+d x) (a+i a \tan (c+d x))^n (A+B \tan (c+d x)) \, dx=\int \mathrm {tan}\left (c+d\,x\right )\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^n \,d x \]

[In]

int(tan(c + d*x)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^n,x)

[Out]

int(tan(c + d*x)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^n, x)